

5 Innovations in Musculoskeletal Disorder (MSD) Prevention

New and emerging technologies are transforming how organizations assess and prevent musculoskeletal disorders

Wearable device that augments, enables, assists or enhances physical activity.

Cobots

Collaborative robots work safely alongside a human counterpart to complete work, particularly repetitive or forceful tasks to prevent and reduce MSDs.

Wearable Sensors

Devices worn on the body to give real-time feedback on a user's movements, posture and vital signs.

Computer Vision

Technologies that use video input and artificial intelligence to assess MSD risks.

Extended Reality (XR)

Computer-generated imagery used in augmented or virtual space to help workers identify ergonomic risks and practice difficult tasks in a controlled environment.

3

Exoskeletons

Wearable devices that augment, enable, assist or enhance physical activity.

Supports Posture

Reduces Discomfort

Minimizes Fatique

Enhances Performance

LEARN MORE nsc.org/msd

REFERENCES

Canadian Centre for Occupational Health and Safety (2023) https://www.ccohs.ca/oshanswers/safety_haz/exoskeletons.html

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604650/

Søraa & Villaronga (2020) https://www.researchgate.net/publication/341820578 Exoskeletons for all The interplay between exoskeletons inclusion gender and intersectionality

DID YOU KNOW?

Exoskeletons can be active or passive.

Active Exoskeletons

- Rigid
- Powered or motorized
- Enhances and augments worker strength

Passive Exoskeletons

- Rigid or soft
- Use levers, springs or counterbalance forces
- Redistributes force from back and shoulders

BE AWARE

Exoskeletons are not a one-stop solution. They are not appropriate for all work tasks and should be used in combination with other ergonomic strategies to prevent MSDs.

PRO TIP

Account for the varied needs of your workforce.

You may need to purchase a variety of devices that meet the ergonomic needs of your diverse workforce. Ask vendors how their equipment accounts for unique worker needs.

Some factors to consider:

- Shape and size
- User experience
- Fit
- Balance
- Comfort
- Ability to put on and take off
- Type of task
- Impact on range of motion
- Ease of use

Cobots

Collaborative robots work safely alongside a human counterpart to complete work, particularly repetitive or forceful tasks, to prevent and reduce MSDs.

4 LEVELS OF COLLABORATION

Coexistence

Humans and robots work independently in the same space

Sequential Collaboration

Humans and robots work on a task in turns

Cooperation

Humans and robots work together on a task

Responsive Collaboration

Robot responds to the movement of the worker

LEARN MORE nsc.org/msd

REFERENCES

The American Society of Mechanical Engineers (2020)

https://www.asme.org/topics-resources/content/infographic-cobots-safety-and-risk-assessment

Faccio et al. (2022) https://link.springer.com/article/10.1007/s10845-022-01953-w

International Federation of Robotics (2018)

https://web.archive.org/web/20190823143255/https://ifr.org/

DID YOU KNOW?

Common Safety Features

- Multiple redundant micro-controllers stop motion if one or more controller fails
- Motion sensors halt movement if a worker is too close
- Speed and range of motion are limited
- Lightweight materials and rounded joints reduce force in the event of a collision

BE AWARE

Cobots do not replace workers.

Collaborative robots perform high-force, repetitive or monotonous tasks, reducing risk of injury and freeing workers to perform tasks that people are uniquely equipped to complete.

PRO TIP

Perception matters. When introducing cobots, consider workers' perspectives.

Trust

Do workers feel safe around the cobot?

Acceptance

Do workers believe the cobot will enhance (rather than replace) their job performance?


Usability

Is the cobot easy for workers to use to accomplish their duties?

Wearable Sensors

Devices worn on the body to give real-time feedback on a user's movements, posture and vital signs.

LEARN MORE nsc.org/msd

REFERENCES

Rong et al. (2021) https://www.mdpi.com/1424-8220/21/11/3806

Schall et al. (2018) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307130/

DID YOU KNOW?

Sensors can be comfortably and discreetly worn in a number of ways.

Hats

Sunglasses Earbuds

Watches/ Bracelets

/ Clothing

Chest Straps Belts

Anklets

Shoes

Smart Phones

BE AWARE

Privacy and transparency are essential.

- Seek workers' input on the selection and rollout of new devices
- Keep workers informed on how data are used to support their work
- Be clear that results are not used to penalize workers
- Prioritize confidentiality in collection, storage and display of data

PRO TIP

Use the data from wearables to give workers a greater sense of autonomy.

- Look for devices that provide real-time communication
- Let workers see their own data so they can understand and learn

Computer Vision

Technologies that use video input and artificial intelligence to assess MSD risks.

BENEFITS OF COMPUTER VISION

Automatic

Immediate feedback from real-time video input

Accessible

Non-expert team members can conduct accurate assessments from their existing devices

Economical

Relatively low-cost technology

Efficient

Multiple movements and postures assessed at once

United States LEARN MORE nsc.org/msd

REFERENCES

Centers for Disease Control and Prevention (2020) https://blogs.cdc.gov/niosh-science-blog/2020/12/09/computer-vision/

Li et al. (2017)

DID YOU KNOW?

Computer vision is less disruptive and less invasive to the worker than wearable devices.

- Quickly assess multiple people without interrupting work.
- Get better data on MSD risks when people are moving naturally.

BE AWARE

Computer vision generates a large amount of data that requires proper storage and security.

Tips to secure your data:

Define data collection and storage policies

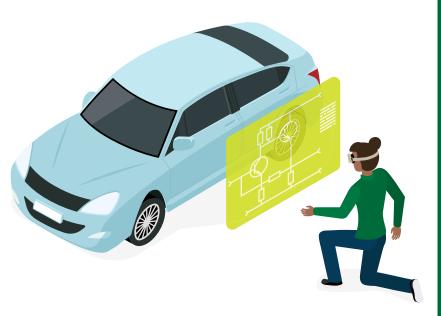
Classify who has access to the data and for what purpose

Invest in data security software

Encrypt data files and require user authentication

Mask personal identifying information

Train staff on best practices in data security


PRO TIP

Ethics are essential. Never collect data without workers' consent.

- Inform workers about the data you are collecting and how it will be used.
- Use facial blurring to protect worker privacy.

Extended Reality (XR)

Computer-generated imagery used in augmented or virtual space to help workers identify ergonomic risks and practice difficult tasks in a controlled environment.

Virtual Reality

An immersive digital experience

Augmented Reality

Digital information layered onto real-world elements

REFERENCES

The Ergonomics Center (2022) https://www.ergocenter.ncsu.edu/ergohowl_q1_2022/

Kaplan et al. (2021) https://journals.sagepub.com/doi/abs/10.1177/0018720820904229

Scientific American (2020)
https://blogs.scientificamerican.com/voices/virtual-reality-has-an-accessibility-problem/

Verdantix (2020) https://www.nsc.org/faforms/work-to-zero-safety-technology

Zhao & Lucas (2015)
https://www.researchgate.net/publication/259958234 Virtual reality

DID YOU KNOW?

XR training is just as effective as traditional training.

- Safe, controlled environment to learn new tasks
- Real-time ergonomic feedback
- Repeatable, lifelike scenarios
- On demand access to instructions and user manuals
- Adaptable conditions to meet training needs
- More sustainable and cost effective

BE AWARE

Some workers may experience challenges if XR devices are worn too long, including:

- Strain to the eyes, neck or shoulders
- Visual and muscular fatigue
- Mental overload
- Motion sickness
- Disorientation
- Anxiety

PRO TIP

Select training devices that account for the accessibility needs of your workforce.

- Adjustable headsets
- Adaptable text size
- Controllable light, darkness and color
- Controller-free hand-tracking
- Non-visual sensory feedback
- Alternative training options